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Abstract
Run-on sentences are common grammatical
mistakes but little research has tackled this
problem to date. This work introduces two ma-
chine learning models to correct run-on sen-
tences that outperform leading methods for re-
lated tasks, punctuation restoration and whole-
sentence grammatical error correction. Due to
the limited annotated data for this error, we ex-
periment with artificially generating training
data from clean newswire text. Our findings
suggest artificial training data is viable for this
task. We discuss implications for correcting
run-ons and other types of mistakes that have
low coverage in error-annotated corpora.

1 Introduction

A run-on sentence is defined as having at least two
main or independent clauses that lack either a con-
junction to connect them or a punctuation mark to
separate them. Run-ons are problematic because
they not only make the sentence unfriendly to the
reader but potentially also to the local discourse.
Consider the example in Table 1.

In the field of grammatical error correction
(GEC), most work has typically focused on de-
terminer, preposition, verb and other errors which
non-native writers make more frequently. Run-
ons have received little to no attention even though
they are common errors for both native and non-
native speakers. Among college students in the
United States, run-on sentences are the 18th most
frequent error and the 8th most frequent error
made by students who are not native English
speakers (Leacock et al., 2014).

Correcting run-on sentences is challenging (Ka-
gan, 1980) for several reasons:

• They are sentence-level mistakes with long-
distance dependencies, whereas most other
grammatical errors are local and only need a
small window for decent accuracy.

Before correction
But the illiterate will not stay illiterate always if they
put an effort to improve and are given a chance for
good education, they can still develop into a group
of productive Singaporeans.

After correction
But the illiterate will not stay illiterate always. If
they put an effort to improve and are given a chance
for good education, they can still develop into a
group of productive Singaporeans.

Table 1: A run-on sentence before and after correction.

• There are multiple ways to fix a run-on
sentence. For example, one can a) add
sentence-ending punctuation to separate
them; b) add a conjunction (such as and)
to connect the two clauses; or c) convert an
independent clause into a dependent clause.

• They are relatively infrequent in existing, an-
notated GEC corpora and therefore existing
systems tend not to learn how to correct them.

In this paper, we analyze the task of automat-
ically correcting run-on sentences. We develop
two methods: a conditional random field model
(roCRF) and a Seq2Seq attention model (roS2S)
and show that they outperform models from the
sister tasks of punctuation restoration and whole-
sentence grammatical error correction. We also
experiment with artificially generating training ex-
amples in clean, otherwise grammatical text, and
show that models trained on this data do nearly
as well predicting artificial and naturally occurring
run-on sentences.
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2 Related Work

Early work in the field of GEC focused on correct-
ing specific error types such as preposition and ar-
ticle errors (Tetreault et al., 2010; Rozovskaya and
Roth, 2011; Dahlmeier and Ng, 2011), but did not
consider run-on sentences. The closest work to our
own is Israel et al. (2012), who used Conditional
Random Fields (CRFs) for correcting comma er-
rors (excluding comma splices, a type of run-on
sentence). Lee et al. (2014) used a similar sys-
tem based on CRFs but focused on comma splice
correction. Recently, the field has focused on the
task of whole-sentence correction, targeting all er-
rors in a sentence in one pass. Whole-sentence
correction methods borrow from advances in sta-
tistical machine translation (Madnani et al., 2012;
Felice et al., 2014; Junczys-Dowmunt and Grund-
kiewicz, 2016) and, more recently, neural machine
translation (Yuan and Briscoe, 2016; Chollampatt
and Ng, 2018; Xie et al., 2018; Junczys-Dowmunt
et al., 2018).

To date, GEC systems have been evaluated
on corpora of non-native student writing such as
NUCLE (Dahlmeier et al., 2013) and the Cam-
bridge Learner Corpus First Certificate of En-
glish (Yannakoudakis et al., 2011). The 2013 and
2014 CoNLL Shared Tasks in GEC used NUCLE
as their train and test sets (Ng et al., 2013, 2014).
There are few instances of run-on sentences an-
notated in both test sets, making it hard to assess
system performance on that error type.

A closely related task to run-on error correction
is that of punctuation restoration in the automatic
speech recognition (ASR) field. Here, a system
takes as input a speech transcription and is tasked
with inserting any type of punctuation where ap-
propriate. Most work utilizes textual features with
n-gram models (Gravano et al., 2009), CRFs (Lu
and Ng, 2010), convolutional neural networks or
recurrent neural networks (Peitz et al., 2011;
Che et al., 2016). The Punctuator (Tilk and
Alumäe, 2016) is a leading punctuation restoration
system based on a sequence-to-sequence model
(Seq2Seq) trained on long slices of text which can
span multiple sentences.

3 Model Descriptions

We treat correcting run-ons as a sequence labeling
task: given a sentence, the model reads each token
and learns whether there is a SPACE or PERIOD
following that token, as shown in Table 2. We ap-

This/S shows/S the/S rising/S of/S life/S
expectancies/P it/S is/S an/S achievement/S
and/S it/S is/S also/S a/S challenge/S ./S

Table 2: NUCLE sentence labeled to indicate what
follows each token: a space (S) or period (P).

ply two sequence models to this task, conditional
random fields (roCRF) and Seq2Seq (roS2S).

3.1 Conditional Random Fields

Our CRF model, roCRF, represents a sentence as a
sequence of spaces between tokens, labeled to in-
dicate whether a period should be inserted in that
space. Each space is represented by contextual
features (sequences of tokens, part-of-speech tags,
and capitalization flags around each space), parse
features (the highest uncommon ancestor of the
word before and after the space, and binary indi-
cators of whether the highest uncommon ancestors
are preterminals), and a flag indicating whether
the mean per-word perplexity of the text decreases
when a period is inserted at the space according to
a 5-gram language model.

3.2 Sequence to Sequence Model with
Attention Mechanism

Another approach is to treat it as a form of neural
sequence generation. In this case, the input sen-
tence is a single run-on sentence. During decoding
we pass the binary label which determines if there
is terminal punctuation following the token at the
current position. We then combine the generated
label and the input sequence to get the final output.

Our model, roS2S, is a Seq2Seq attention
model based on the neural machine translation
model (Bahdanau et al., 2015). The encoder is
a bidirectional LSTM, where a recurrent layer
processes the input sequence in both forward
and backward direction. The decoder is a uni-
directional LSTM. An attention mechanism is
used to obtain the context vector.

4 Data

Train: Although run-on sentences are common
mistakes, existing GEC corpora do not include
enough labeled run-on sentences to use as training
data. Therefore we artificially generate training
examples from a corpus of clean newswire text,
Annotated Gigaword (Napoles et al., 2012). We
randomly select paragraphs and identify candidate
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pairs of adjacent sentences, where the sentences
have between 5–50 tokens and no URLs or spe-
cial punctuation (colons, semicolons, dashes, or
ellipses). Run-on sentences are generated by re-
moving the terminal punctuation between the sen-
tence pairs and lowercasing the first word of the
second sentence (when not a proper noun). In total
we create 2.8 million run-on sentences, and ran-
domly select 1.75M other Gigaword sentences for
negative examples. We want the model to learn
more patterns of run-on errors by feeding a large
portion of positive examples while we report our
results on a test set where the ratio is closer to that
of real world. We call this data FakeGiga-Train.
An additional 28k run-ons and 218k non-run-ons
are used for validation.

Test: We evaluate on two dimensions: clean ver-
sus noisy text and real versus artificial run-ons. In
the first evaluation, we artificially generate sen-
tences from Gigaword and NUCLE following the
procedure above such that 10% of sentences are
run-ons, based on our estimates of their rate in
real-world data (similar observations can be found
in Watcharapunyawong and Usaha (2012)). We re-
fer to these test sets as FakeGiga and FakeESL re-
spectively. Please note that the actual run-on sen-
tences in NUCLE are not included in FakeESL.

The second evaluation compares performance
on artificial versus naturally occurring run-on sen-
tences, using the NUCLE and CoNLL 2013 and
2014 corpora. Errors in these corpora are an-
notated with corrected text and error types, one
of which is Srun: run-on sentences and comma
splices. Sruns occur 873 times in the NUCLE
corpus. We found that some of the Srun anno-
tations do not actually correct run-on sentences,
so we reviewed the Srun annotations to exclude
any corrections that do not address run-on sen-
tences. We also found that there are 300 out of
the 873 sentences with Srun annotations which
actually perform correction by adding a period.
Other Srun annotations correct run-ons by con-
verting independent clauses to dependent clauses,
but we only target missing periods in this initial
work. We manually edit Srun annotations so that
the only correction performed is inserting periods.
(This could be as simple as deleting the comma
in the original text of a comma splice or more in-
volved, as in rewriting a dependent clause to an
independent clause in the corrected text.) In total,
we find fewer than 500 run-on sentences. Run-

Dataset RO Non-RO Total
Train FakeGiga-Train 2.76M (61%) 1.75M (39%) 4.51M

Test

FakeGiga 28,232 (11%) 218,076 (89%) 246,308
RealESL 542 (1%) 58,987 (99%) 59,529
FakeESL 5,600 (9%) 56,350 (91%) 61,950
FakeESL-1% 560 (1%) 56,350 (99%) 56,910

Table 3: Number of run-on (RO) and non-run-on
(Non-RO) sentences in our datasets.

ning the same procedure over the CoNLL 2013
and 2014 Shared Task test sets results in 59 more
run-on sentences and 2,637 non-run-on sentences.
We discard all other error annotations and com-
bine the NUCLE train and CoNLL test sets, which
we call RealESL.

Only 1% of sentences in RealESL are run-ons,
which may not be the case in other forms of ESL
corpora. So for a fair comparison we down-sample
the run-on sentences in FakeESL to form a test set
with the same distribution as RealESL, FakeESL-
1%. Table 3 describes the size of our data sets.

5 Experiments

Metrics: We report precision, recall, and the
F0.5 score. In GEC, precision is more important
than recall, and therefore the standard metric for
evaluation is F0.5, which weights precision twice
as much as recall.

Baselines: We report results on a balanced ran-
dom baseline and state-of-the-art models from
whole-sentence GEC (NUS18) and punctuation
restoration (the Punctuator). NUS18 is the re-
leased GEC model of Chollampatt and Ng (2018),
trained on two GEC corpora, NUCLE and Lang-
8 (Mizumoto et al., 2011). We test two versions
of the Punctuator: Punctuator-EU is the released
model, trained on English Europarl v7 (Koehn,
2005), and Punctuator-RO, which we trained on
artificial clean data (FakeGiga-Train) using the au-
thors’ code.1

roCRF: We train our model with `1-
regularization and c = 10 using the CRF++
toolkit.2 Only features that occur at least 5 times
in the training set were included. Spaces are
labeled to contain missing punctuation when the
marginal probability is less than 0.70. Parameters
are tuned to F0.5 on 25k held-out sentences.

1github.com/ottokart/punctuator2
2Version 0.59, github.com/taku910/crfpp/

github.com/ottokart/punctuator2
github.com/taku910/crfpp/
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Clean v. Noisy - Artificial Data Real v. Artificial - Noisy Data
FakeGiga FakeESL RealESL FakeESL-1%

P R F0.5 P R F0.5 P R F0.5 P R F0.5

Random 0.10 0.10 0.10 0.09 0.09 0.09 0.01 0.01 0.01 0.01 0.01 0.01
Punctuator-EU 0.22 0.45 0.25 0.74 0.48 0.67 0.11 0.65 0.13 0.12 0.67 0.14
Punctuator-RO 0.78 0.57 0.73 0.58 0.51 0.56 0.11 0.31 0.13 0.18 0.52 0.21
roCRF 0.89 0.49 0.76 0.83 0.24 0.55 0.34 0.27 0.32 0.32 0.24 0.30
roS2S 0.84 0.94 0.86 0.77 0.44 0.67 0.30 0.32 0.31 0.30 0.34 0.31

Table 4: Performance on clean v. noisy artificial data with 10% run-ons, and real v. artificial data with 1% run-ons.

roS2S: Both the encoder and decoder have a
single layer, 1028-dimensional hidden states, and
a vocabulary of 100k words. We limit the input
sequences to 100 words and use 300-dimensional
pre-trained GloVe word embeddings (Pennington
et al., 2014). The dropout rate is 0.5 and mini-
batches are size 128. We train using Ada-grad
with a learning rate of 0.0001 and a decay of 0.5.

6 Results and Analysis

Results are shown in Table 4. A correct judg-
ment is where a run-on sentence is detected and
a PERIOD is inserted in the right place. Across
all datasets, roCRF has the highest precision. We
speculate that roCRF consistently has the highest
precision because it is the only model to use POS
and syntactic features, which may restrict the oc-
currence of false positives by identifying longer
distance, structural dependencies. roS2S is able to
generalize better than roCRF, resulting in higher
recall with only a moderate impact on precision.
On all datasets except RealESL, roS2S consis-
tently has the highest overall F0.5 score. In gen-
eral, Punctuator has the highest recall, probably
because it is trained for a more general purpose
task and tries to predict punctuation at each possi-
ble position, resulting in lower precision than the
other models.

NUS18 predicts only a few false positives and
no true positives, so P = R = 0 and we exclude
it from the results table. Even though NUS18 is
trained on NUCLE, which RealESL encompasses,
its very poor performance is not too surprising
given the infrequency of run-ons in NUCLE.

Clean v. Noisy In the first set of experiments
(columns 2 and 3), we compare models on clean
text (FakeGiga), which has no other grammati-
cal mistakes, and noisy text (FakeESL), which
may have several other errors in each sentence.
Punctuator-EU is the only model which improves

when tested on the noisy artificial data com-
pared to the clean. It is possible that the speech
transcripts used for training Punctuator-EU more
closely resemble FakeESL, which is less formal
than FakeGiga. All other models do worse, which
could be due to overfitting FakeGiga. However,
further work is needed to determine how much of
the performance drop is due to a domain mismatch
versus the frequency of grammatical mistakes in
the data.

Real v. Artificial So far, we have only used arti-
ficially generated data for training and testing. The
second set of experiments (columns 4 and 5) de-
termines if it is easier to correct run-on sentences
that are artificially generated compared to those
that occur naturally. The Punctuators do poorly on
this data because they are too liberal, evidenced
by the high recall and very low precision. Our
models, roCRF and roS2S, outperform the Punc-
tuators and have similar performance on both the
real and artificial run-ons (RealESL and FakeESL-
1%). roCRF has significantly higher precision on
RealESL while roS2S has significantly higher re-
call and F0.5 on RealESL and FakeESL-1% (with
bootstrap resampling, p < 0.05). This supports
the use of artificially generated run-on sentences
as training data for this task.

7 Conclusions

Correcting run-on sentences is a challenging task
that has not been individually targeted in earlier
GEC models. We have developed two new mod-
els for run-on sentence correction: a syntax-aware
CRF model, roCRF, and a Seq2Seq model, roS2S.
Both of these outperform leading models for punc-
tuation restoration and grammatical error correc-
tion on this task. In particular, roS2S has very
strong performance, with F0.5 = 0.86 and F0.5 =
0.67 on run-ons generated from clean and noisy
data, respectively. roCRF has very high precision
(0.83 ≤ P ≤ 0.89) but low recall, meaning that it
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does not generalize as well as the leading system,
roS2S.

Run-on sentences have low frequency in anno-
tated GEC data, so we experimented with artifi-
cially generated training data. We chose clean
newswire text as the source for training data to en-
sure there were no unlabeled naturally occurring
run-ons in the training data. Using ungrammati-
cal text as a source of artificial data is an area of
future work. The results of this study are incon-
clusive in terms of how much harder the task is
on clean versus noisy text. However, our findings
suggest that artificial run-ons are similar to natu-
rally occurring run-ons in ungrammatical text be-
cause models trained on artificial data do just as
well predicting real run-ons as artificial ones.

In this work, we found that a leading GEC
model (Chollampatt and Ng, 2018) does not cor-
rect any run-on sentences, even though there was
an overlap between the test and training data for
that model. This supports the recent work of
Choshen and Abend (2018), who found that GEC
systems tend to ignore less frequent errors due to
reference bias. Based on our work with run-on
sentences, a common error type that is infrequent
in annotated data, we strongly encourage future
GEC work to address low-coverage errors.
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