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Abstract

The field of grammatical error correction
(GEC) has made tremendous bounds in the
last ten years, but new questions and obsta-
cles are revealing themselves. In this posi-
tion paper, we discuss the issues that need
to be addressed and provide recommen-
dations for the field to continue to make
progress, and propose a new shared task.
We invite suggestions and critiques from
the audience to make the new shared task
a community-driven venture.

1 Introduction

In the field of grammatical error correction (GEC),
the Helping Our Own shared tasks in 2011 (Dale
and Kilgarriff, 2011) and 2012 (Dale et al., 2012),
and then the CoNLL shared tasks of 2013 (Ng
et al., 2013) and 2014 (Ng et al., 2014) marked
a sea change. For the first time there were public
datasets, most notably the NUS Corpus of Learner
English (NUCLE; Dahlmeier et al., 2013), and
evaluation metrics, of which the most commonly
used to date is M2 (Dahlmeier and Ng, 2012). This
has allowed researchers from other fields, such
as machine translation, to enter GEC more eas-
ily. It has also enabled new developments, with
many papers published on metrics, new algorithms
(most recently neural methods), and occasionally
new datasets.

Even with the accelerated progress in GEC,
problems yet remain in the field. The use of spe-
cific datasets may be GEC’s worst enemy, as sys-
tem and even evaluation metric development rely
too heavily on the NUCLE test set. While prob-
ably one of the most important contributions to
the field’s development to date, the lack of pub-
licly available alternatives has caused some over-
optimization. Other issues have also gone undis-

cussed. For example, nearly all work that has been
published in the NLP community has focused on
standalone systems, and very few investigate their
impact on downstream users, except, e.g., Nagata
and Nakatani (2010); Chodorow et al. (2010).

In this short paper, we take stock of the current
state of GEC (§2) and its limitations (§3), and out-
line where we believe the field should be five years
from now (§4). We finish with a recommendation
for a new community-driven shared task that will
help the field progress even further (§5). We look
forward to discussing this proposal with the com-
munity and to refine a shared task for 2018.

2 GEC: A Quick Retrospective

A complete retrospective is outside the scope of
this paper and thus we focus on two key aspects of
the field: For a more detailed review of the field,
we refer the reader to Leacock et al. (2014).

2.1 Datasets
There are several error-annotated corpora, and for
the purposes of this paper, we only focus on the
most recent public datasets. The size and char-
acteristics of each corpus is summarized in Ta-
ble 1. The most frequently used corpus for GEC
is NUCLE, which was the official dataset of the
2013 and 2014 shared tasks. It is a collection of
essays written by students at the National Univer-
sity of Singapore (Dahlmeier et al., 2013). The
test set and system results from the most recent
shared task were released to the community (Ng
et al., 2014), and have been the focus of recent
work on automatic metrics (see §2.2). Addition-
ally, this test set has been augmented with eight
additional annotations from Bryant and Ng (2015)
and eight from Sakaguchi et al. (2016).

The Cambridge Learner Corpus (CLC) contains
a broader representation of native languages than
the NUCLE, however only the First Certificate in
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Num. Num. Sents. Err. type Fluency Err. span Diverse Diverse Diverse Native
Corpus refs. sent. changed labeled edits >1 sent. proficiency topic L1 speakers
NUCLE 59k 2 38% 3 (7) 3 7 7 7 7
FCE 34k 1 62% 3 7 3 3 3 3 7
Lang-8 2.5M ≥1 42% 7 3 3 3 3 3 7
AESW 1.2M 1 39% 7 7 3 7 7 3 3 + 7
JFLEG 1.5k 4 86% 7 3 7 3 3 3 7

Table 1: GEC corpora available for free (for research purposes) and desired properties, identified in §3.1. 3 and 7 indicate
whether the corpus exhibits each property. Fluency edits for the NUCLE test set were added by Sakaguchi et al. (2016).

English (FCE) portion is publicly available (Yan-
nakoudakis et al., 2011). The FCE is approxi-
mately the same size as NUCLE and was used for
the 2012 shared task. However it has not been
used to the same extent as NUCLE, presumably
because it lacks multiple annotations and the 2012
shared task system outputs were not released.

All of the corpora described above have been
annotated with spans of text containing an error
and assigned an error code. Unlike these, the
Lang-8 Learner Corpora Corpus of Learner En-
glish (Tajiri et al., 2012) is a parallel set of original
and corrected sentences from lang-8.com, an
online community of language learners who post
text that is corrected by other users. It is also
the largest public GEC corpora, with more than
2 million English sentences.1 Another large cor-
pus currently available was released for the first
Automatic Evaluation of Scientific Writing shared
task (AESW; Daudaravicius et al., 2016). Unlike
the other corpora, it contains scientific writing by
native and non-native English speakers, corrected
by professional editors. Because the writers are
highly proficient, there is a lower diversity of er-
rors than the other corpora. More than half of the
errors are related to punctuation (Flickinger et al.,
2016), which compose less than 7% of NUCLE
errors.

Finally, the JHU FLuency-Extended GUG cor-
pus (JFLEG) is a small dataset for tuning and eval-
uating GEC systems. 1.5k sentences are taken
from the GUG corpus (Heilman et al., 2014),
which labels sentences with an ordinal grammati-
cality score. In JFLEG, each sentence is corrected
four times for grammaticality and fluency (Sak-
aguchi et al., 2016).

2.2 Evaluation
Precision, recall, and F-score have been used to
evaluate GEC systems that correct targeted er-
ror types. Three additional evaluation metrics

1Because of noise and implementation differences in sen-
tence extraction, the size varies from 2–2.5 million sentences.

have been proposed for GEC: MaxMatch (M2;
Dahlmeier and Ng, 2012), I-measure (Felice and
Briscoe, 2015), and GLEU (Napoles et al., 2015).
The first two metrics compare the changes made
in the output to error-coded spans of the refer-
ence corrections. M2 was the metric used for
the 2013 and 2014 CoNLL GEC shared tasks (Ng
et al., 2013, 2014). It captures word- and phrase-
level edits by building an edit lattice and calcu-
lating an F-score over the lattice. I-measure (IM)
is based on token-level alignment-based accuracy
among the source, hypothesis, and gold-standard.
IM considers the distinction between “do-nothing
(already grammatical) baseline” and systems that
only propose wrong corrections (i.e., make the
source sentence worse). Unlike these two ap-
proaches, GLEU does not need error-coded refer-
ences (Napoles et al., 2015). Based on BLEU (Pa-
pineni et al., 2002), it computes n-gram precision
of the system output against reference sentences,
and additionally penalizes n-grams in the hypoth-
esis that should have been corrected but failed.

3 Limitations

3.1 Problems with Datasets

As we saw in the previous section, the major-
ity of the commonly used datasets are limited to
students, specifically college-level ESL writers.
To date, the overwhelmingly majority of publica-
tions benchmark on NUCLE, save for a few ex-
ceptions such as Cahill et al. (2013) and Rei and
Yannakoudakis (2016) which means that research
efforts are becoming over-optimized for one set.
This lack of diversity means that it is not clear how
systems perform on other genres under different
training conditions. We should look to the pars-
ing community as a warning sign. For well over a
decade, the field was heavily focused on improv-
ing parsing accuracy on the Penn Treebank (Mar-
cus et al., 1993), but robustness was greatly im-
proved with the advent of Ontonotes (Hovy et al.,
2006) and the Google Web Treebank (Petrov and
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GLEU IM [-100, M2 [0, 100]
System [0,100] 100] P R F0.5

“a” 0.2 0.0 28.4 31.3 28.9
“a a” 0.6 0.0 28.7 31.8 29.3
“a a a” 1.6 0.0 28.7 32.0 29.4
Source 57.4 0.0 100.0 0.0 0.0
CAMB14 64.3 -5.3 39.7 30.1 37.3
CUUI14 64.6 -2.2 41.8 24.9 36.8
AMU14 64.6 -2.5 41.6 21.4 35.0
Src>Game 3 7 3 7 7
Src<Sys 3 7 7 3 3

Table 2: Metric scores of three artificially contrived systems
(Game), input source sentences (Src), and top 3 system out-
puts (Sys) on CoNLL14 data. The bottom two rows show
whether each metric scores the systems better than Game or
worse than Source. Humans judge all systems be better than
over Source.

McDonald, 2012).
Another issue is training data size. The sis-

ter field of machine translation (MT) usually has
datasets in the orders of millions or even tens
of millions of sentence pairs. The largest GEC
datasets barely approach that figure, with 2.5 mil-
lion sentences at a maximum, a number which in-
cludes sentences that were not corrected.

Table 1 summarizes the strengths and weak-
nesses of the most commonly used GEC corpora
across different properties ranging from size to
diversity in native language (L1). The most no-
table weakness across corpora is the lack of mul-
tiple reference corrections. NUCLE contains two
corrections per sentence and JFLEG 4. M2 and
GLEU scores increase with more references but
at a diminishing rate (Bryant and Ng, 2015; Sak-
aguchi et al., 2016). Further investigation is war-
ranted to determine what an ideal number of refer-
ences is, given the trade off between cost and relia-
bility. Some corpora contain little diversity in pro-
ficiency, topic, and/or native language of the writ-
ers (namely NUCLE and AESW), however AESW
is the only corpus to contain sentences by native
English speakers.

3.2 Problems with Evaluation

The 2014 CoNLL shared task has enabled, for the
first time, the development of evaluation metrics.
These metrics are evaluated by comparing their
ranking of the shared task systems with the rank-
ing done by human annotators. Sakaguchi et al.
(2016) showed that GLEU could rank systems
closer to a human ranking than M2 and IM, and
a higher correlation could be found when com-
bining GLEU with a reference-less fluency met-

ric (Napoles et al., 2017). However, it is impor-
tant to take these results with a grain of salt—all
benchmarking of the metrics was done with the
CoNLL 2014 systems and data, and it remains to
be seen if this ranking would hold on other, larger
datasets.

Another issue with the metrics is the number
of references available for comparison. As in
machine translation, the more references (human-
generated gold-standard corrections) one has,
the better one can evaluate a system. The
CoNLL 2014 test set has 18 references annotated,
but one can find examples where a system pro-
duces a correction which is not reflected in the ref-
erences. This gets more complicated when human
raters feel it is necessary to rewrite a sentence.

A third issue is that no metric directly measures
meaning preservation. This means that a system
could produce a more fluent version of the original
but accidentally change one word, and that could
change the meaning of the whole sentence. For
example, if a system accidentally corrected doc-
umentary to document in “The documentary gave
a nice summary of global warming.” By current
metrics, that error would have the same penalty as
a minor spelling mistake.

Finally, the most commonly used GEC met-
ric, M2, has a serious weakness, which has been
noted in earlier papers (Felice and Briscoe, 2015;
Sakaguchi et al., 2016; Bryant et al., 2017). The
phrasal alignments under-penalize a sequence of
incorrect tokens, and to illustrate how troubling
this is, we tested a series of dummy systems,
where each system produces the same sentence re-
gardless of input (the sentences produced by each
system are a, a a, and a a a). Table 2 shows their
scores on the CoNLL 2014 test set evaluated on
the official NUCLE references (without alterna-
tives), compared to the top 3 systems in the shared
task, CAMB14 (Felice et al., 2014), CUUI14 (Ro-
zovskaya et al., 2014), and AMU14 (Junczys-
Dowmunt and Grundkiewicz, 2014). The reader
will notice that GLEU and IM score these sen-
tences at or near zero, however according to M2,
the dummy system that only returns the string “a
a” scores higher than 7/13 systems participating in
the 2014 Shared Task. The IM score is also prob-
lematic in that the gamed sentences have the same
score as the source.
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Metric score (rank)

GLEU IM M2

System Sentence [0,100] [-100,100] [0,100]

Source In both advertisements is said that these tooth pastes will make your
teeth briliant and brighter .

15.7 (4) 0.0 (4) 0.0 (5)

Reference
e

Both advertisements
e

say that the toothpaste will make your teeth
brilliant and brighter .

50.7 (1) 17.4 (3) 65.2 (3)

AMU16 &
NUS16

In both advertisements is said that these tooth pastes will make your
teeth briliant and brighter .

15.7 (4) 0.0 (4) 0.0 (5)

CAMB14 In both advertisements is said that these tooth pastes will make your
teeth brilliant and brighter .

35.5 (3) 100.0 (1) 83.3 (1)

CAMB16 In both advertisements it is said that these tooth problems will make
your teeth brilliant and brighter .

39.5 (2) 56.1 (2) 71.4 (2)

Dummy a a a . 2.9 (5) -47.7 (5) 52.6 (4)

Table 3: An original source sentence and candidate corrections, along with the score of each sentence from different metrics.
Changed or inserted spans are underlined and

e
indicates deletions.

4 Looking into the Future

In this section we outline our recommendations for
how the field should develop.

4.1 Data

As the world’s communication is not limited to
college-level essays, it is important that we have
datasets which better represent as much breadth
as possible. Ideally, datasets should span differ-
ent genres (such as emails, blog posts, and official
documents) and include content from both native
and non-native speakers, as well as from different
proficiency levels. All of these changes will en-
able the field to better assess how we are helping
more of the world’s writers under different condi-
tions, and also enable one to test adaptation be-
tween domains.

4.2 Evaluation

We envision evaluation metrics which check that
corrections are not only grammatically valid, but
also check that the corrections are native-sounding
and preserve the original meaning or intent of the
writer. Future metrics should be easy to compute
and be interpretable. For instance, a range be-
tween -1 and 1 may be preferred (like IM uses),
since it is possible a suggested set of corrections
could produce a sentence which is worse than the
original. If multiple references are used, metrics
should assign credit to corrections which match
different references in different places, assuming
the outcome is overall coherent. In addition, most
(if not all) evaluation schemes to date have focused
on the sentence as the minimal unit. It would be

good to take the entire document into account and
allow for more global rewrites, such as consistent
tense.

Ultimately, a metric should say whether or not
a system has attained the same level of perfor-
mance as a human judge. One way of doing this
is through a GEC Turing Test, where system out-
puts are blindly judged alongside human correc-
tions of the same sentences. If human adjudicators
think the system outputs are indistinguishable in
quality from the human corrections (for example,
given a set of criteria such as being good correc-
tions, meaning preserving and native-sounding)
then that is a very strong signal that GEC has at-
tained human-level performance.

To illustrate the shortcomings of current met-
rics, Table 3 contains a JFLEG sentence corrected
by current leading systems (AMU16 (Junczys-
Dowmunt and Grundkiewicz, 2016); NUS16
(Chollampatt et al., 2016); CAMB16 (Yuan and
Briscoe, 2016)) and the automatic metric scores.2

Notice that the CAMB16 sentence, which changes
tooth pastes→ tooth problems, is ranked the high-
est system output by GLEU and the second highest
by IM and M2. All metrics score it higher than the
unchanged Source sentence. Another issues evi-
denced in the table is that IM and M2 score the im-
perfect correction (CAMB14) as better than Refer-
ence; and according to M2, the Dummy output is
better than Source.

We believe that the GEC field should take

2All metrics run with default settings. Reference is evalu-
ated against the other 3 references; other sentences are evalu-
ated against all 4 references.
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notes from the Workshop on Machine Translation
(WMT) (Bojar et al., 2016). There the participants
in the evaluation shared tasks are also responsible
for contributing system ranking judgments. This
makes the whole effort more community-driven
and takes the pressure off one group from having
to supply all annotations.

4.3 Consensus on Goals and Applications
As a corollary to data and metrics, the end-goal
of GEC also needs to be refined within the com-
munity. Initial approaches to GEC seemed to fo-
cus on providing feedback to English language
learners where specific error types would be tar-
geted and feedback would be given in terms of
detection or possible corrections. The work was
also motivated by concurrent work in using NLP
for automatic essay scoring (for example, Attali
and Burstein (2006)). Chodorow et al. (2012)
noted several other applications for GEC: improv-
ing overall writing quality for both native and non-
native writers, assistive language learning, and
applications within NLP (such as post-editing in
MT). More recently the field has drifted to “whole
sentence GEC” using statistical or neural MT ap-
proaches. In this situation, the writer simply gets
a complete rewrite of their sentence, which may
be useful as an instructional tool in some circum-
stances, but not all.

There is no consensus on what the focus appli-
cation(s) should be. Which application determines
which methods and which evaluation metrics one
uses. For example, if one wants to provide feed-
back to language learners, then a high-precision,
interpretable method is preferred. Conversely, if
the application is simply to automatically clean up
one’s writing without any feedback, then a whole
sentence approach may be preferred. Very few pa-
pers delve into error detection and correction for
goals other than whole-sentence error correction
or targeted feedback for ESL writers. Datasets and
metrics should be created with a specific goal in
mind. Thus, the field should reassess what are the
goals and how we evaluate with respect to these
goals.

5 Proposal for a New Shared Task
We believe it is time for another shared task in the
field, this one designed with consideration the field
should be several years from now. The CoNLL
shared tasks were instrumental in unifying the
field with a common benchmark corpus and met-

ric, and the AESW shared task provided data from
a new domain to evaluate on. We recommend the
following:
• Data: A new corpus for training and eval-

uation that spans different genres. We have
already begun collecting conversational data
from native and non-native writers and from
genres other than essays, such as emails. Our
aim is to construct a corpus larger than the
NUCLE to support the development of data-
hungry methods such as neural MT.
• Annotation: The data is corrected for flu-

ency with crowdsourcing as in Sakaguchi
et al. (2016) which is a cheap and efficient
way of collecting annotations of reasonable
quality. Error types can be automatically
tagged using a method such as that described
in Bryant et al. (2017)
• Metric Evaluation: Borrowing from the

WMT community, the shared task should
also be a venue to improve automatic GEC
evaluation. Participants will provide judg-
ments on system rankings.

We invite discussion from the community
and seek others to help contribute data, an-
notations and other resources to make this a
community-driven event. Our goal is to host
a shared task in 2018. We believe that this
type of collaboration has made the WMT eval-
uations a success, and will similarly benefit
GEC. We have set up a public mailing list
where others can post their comments and sug-
gestions: https://groups.google.com/
forum/#!forum/gec-sharedtask.

6 Conclusions

The goal of this paper is to laud the progress that
the GEC field has made, but also highlight the lim-
itations that must be addressed for the field to grow
further. The reliance on a few narrow datasets is
problematic as it has a major impact on system
development and metric development, as well as
robustness when applying these approaches in the
real world. Our concern is that unless data and
metrics are improved, it will be hard to assess the
value of new algorithms optimized for a small set
of datasets and metrics. We list a recommendation
for a new shared task to fuel discussion offline as
well as at the BEA12 Workshop in Copenhagen.3

3https://www.cs.rochester.edu/
˜tetreaul/emnlp-bea12.html
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